

Characteristics of Junction Diodes

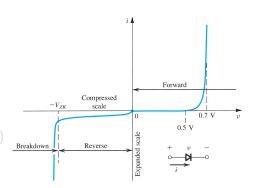
Readings

- Section 4.2 on pages 184-190
- Example 4.3 on page 187

¹Readings are based on Sedra & Smith (2014), Microelectronic Circuits 7th edition. ²Bold reading section are mandatory. Other sections are suggested but not required readings

Kizito NKURIKIYEYEZU, Ph.D.

Characteristics of Junction Diodes


May 23, 2022 1 / 9

Background

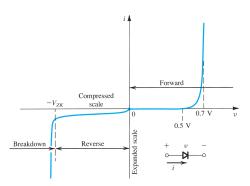
- Diodes are commonly based on pn junction technology¹
- As shown in Fig. 1, the characteristic curve consists of three distinct regions:
 - The forward-bias region when v > 0

• The reverse-bias region when v < 0

The breakdown region $v < V_{ZK}$ (i.e., $v \ll 0$)

FIG 1. A detailed i - v characteristic of a silicon junction diode.

Kizito NKURIKIYEYEZU, Ph.D.


Characteristics of Junction Diodes

May 23, 2022 2 / 9

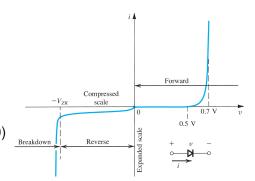
In-depth knowledge on the structure and operation of the pn junction—which is a basic semiconductor structure that implements the diode and plays a dominant role in transistors—has been covered in your previous courses and is covered in details in chapter 3 of the textbook.

Background

- Diodes are commonly based on pn junction technology¹
- As shown in Fig. 1, the characteristic curve consists of three distinct regions:
 - The forward-bias region when v > 0
 - **The reverse-bias region when** v < 0
 - The breakdown region $v < V_{ZK}$ (i.e., $v \ll 0$)

FIG 1. A detailed i - v characteristic of a silicon junction diode.

Kizito NKURIKIYEYEZU, Ph.D.


Characteristics of Junction Diodes

May 23, 2022 2 / 9

In-depth knowledge on the structure and operation of the pn junction—which is a basic semiconductor structure that implements the diode and plays a dominant role in transistors—has been covered in your previous courses and is covered in details in chapter 3 of the textbook.

Background

- Diodes are commonly based on pn junction technology¹
- As shown in Fig. 1, the characteristic curve consists of three distinct regions:
 - The forward-bias region when v > 0
 - The reverse-bias region when v < 0
 - The breakdown region $v < V_{ZK}$ (i.e., $v \ll 0$)

FIG 1. A detailed i - v characteristic of a silicon junction diode.

Kizito NKURIKIYEYEZU, Ph.D.

Characteristics of Junction Diodes

May 23, 2022 2 / 9

In-depth knowledge on the structure and operation of the pn junction—which is a basic semiconductor structure that implements the diode and plays a dominant role in transistors—has been covered in your previous courses and is covered in details in chapter 3 of the textbook.

■ The i–v relationship is closely approximated by Equation (1)

$$i = I_s \left(e^{v/V_T} - 1 \right) \tag{1}$$

where:

- I_s is the saturation current (also called the scale current), $I_s \approx 10^{-15} A^1$
- V_T is the thermal voltage, $V_T = k \cdot T/q = 0.0862T pprox 25 mV$ at $T = 25 \,^{\circ}{
 m C}$
- k is the Boltzmann's constant, $k = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23}$ joules/kelvin

T is the absolute temperature in Kelvins

q is the magnitude of electronic charge, $q = 1.6 \times 10^{-19}$ coulomb

In the forward region, since $i \gg I_S$, Equation (1) can be simplified as

$$i \approx I_s \cdot e^{v/v_T}$$
 (2)

Equation (2) can be expressed alternatively in the logarithmic form as

$$v = V_T \cdot \ln\left(\frac{i}{I_s}\right) \tag{3}$$

In practice the value of I_s is not a constant. It varies and is influenced by the temperature

■ The i–v relationship is closely approximated by Equation (1)

$$i = I_s \left(e^{v/v_T} - 1 \right) \tag{1}$$

where:

 I_s is the saturation current (also called the scale current), $I_s \approx 10^{-15} A^1$

 V_T is the thermal voltage, $V_T = {}^{k+T}/{}_q = 0.0862T pprox 25mV$ at $T = 25\,{}^\circ ext{C}$

k is the Boltzmann's constant, $k = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23}$ joules/kelvin

T is the absolute temperature in Kelvins

q is the magnitude of electronic charge, $q = 1.6 \times 10^{-19}$ coulomb

In the forward region, since $i \gg I_S$, Equation (1) can be simplified as

$$i \approx I_s \cdot e^{v/v_T}$$
 (2)

Equation (2) can be expressed alternatively in the logarithmic form as

$$v = V_T \cdot ln(i/I_s)$$

¹In practice the value of I_s is not a constant. It varies and is influenced by the temperature

■ The i–v relationship is closely approximated by Equation (1)

$$i = I_s \left(e^{v/v_T} - 1 \right) \tag{1}$$

where:

- I_s is the saturation current (also called the scale current), $I_s \approx 10^{-15} A^1$
- V_T is the thermal voltage, $V_T = k \cdot T/q = 0.0862T \approx 25 mV$ at $T = 25 \,^{\circ}\text{C}$
 - k is the Boltzmann's constant, $k = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23}$ joules/kelvin

T is the absolute temperature in Kelvins

q is the magnitude of electronic charge, $q = 1.6 \times 10^{-19}$ coulomb

In the forward region, since $i \gg I_S$, Equation (1) can be simplified as

$$i \approx I_s \cdot e^{v/v_T}$$
 (2)

Equation (2) can be expressed alternatively in the logarithmic form as

$$V = V_T \cdot ln(i/I_s)$$

¹In practice the value of I_s is not a constant. It varies and is influenced by the temperature

■ The i–v relationship is closely approximated by Equation (1)

$$i = I_{s} \left(e^{v/v_{\tau}} - 1 \right) \tag{1}$$

where:

- I_s is the saturation current (also called the scale current), $I_s \approx 10^{-15} A^1$
- V_T is the thermal voltage, $V_T = k \cdot T/q = 0.0862T \approx 25 mV$ at $T = 25 \,^{\circ}\text{C}$
 - k is the Boltzmann's constant, $k = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23}$ joules/kelvin

T is the absolute temperature in Kelvins

q is the magnitude of electronic charge, $q = 1.6 \times 10^{-19}$ coulomb

In the forward region, since $i \gg I_S$, Equation (1) can be simplified as

$$i \approx I_s \cdot e^{v/v_T}$$
 (2)

Equation (2) can be expressed alternatively in the logarithmic form as

$$v = V_T \cdot ln(i/I_s)$$

¹In practice the value of I_s is not a constant. It varies and is influenced by the temperature

■ The i–v relationship is closely approximated by Equation (1)

$$i = I_{s} \left(e^{v/v_{\tau}} - 1 \right) \tag{1}$$

where:

- I_s is the saturation current (also called the scale current), $I_s \approx 10^{-15} A^1$
- V_T is the thermal voltage, $V_T = k \cdot T/q = 0.0862T \approx 25 mV$ at $T = 25 \,^{\circ}\text{C}$
 - k is the Boltzmann's constant, $k = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23}$ joules/kelvin
 - T is the absolute temperature in Kelvins

q is the magnitude of electronic charge, $q = 1.6 \times 10^{-19}$ coulomb

In the forward region, since $i \gg I_S$, Equation (1) can be simplified as

$$i \approx I_s \cdot e^{v/v_\tau}$$
 (2)

Equation (2) can be expressed alternatively in the logarithmic form as

$$\mathbf{v} = \mathbf{V}_T \cdot \mathbf{ln} \left(\frac{i}{I_s} \right)$$

¹In practice the value of I_s is not a constant. It varies and is influenced by the temperature

■ The i–v relationship is closely approximated by Equation (1)

$$i = I_s \left(e^{v/v_\tau} - 1 \right) \tag{1}$$

where:

- I_s is the saturation current (also called the scale current), $I_s \approx 10^{-15} A^1$
- V_T is the thermal voltage, $V_T = k \cdot T/q = 0.0862T \approx 25 mV$ at $T = 25 \,^{\circ}\text{C}$
 - k is the Boltzmann's constant, $k = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23}$ joules/kelvin
 - T is the absolute temperature in Kelvins
 - q is the magnitude of electronic charge, $q = 1.6 \times 10^{-19}$ coulomb
- In the forward region, since $i \gg I_S$, Equation (1) can be simplified as

$$i \approx I_s \cdot e^{v/v_T}$$
 (2)

Equation (2) can be expressed alternatively in the logarithmic form as

$$v = V_T \cdot \ln\left(\frac{i}{I_s}\right)$$

¹In practice the value of I_s is not a constant. It varies and is influenced by the temperature

■ The i–v relationship is closely approximated by Equation (1)

$$i = I_s \left(e^{v/v_\tau} - 1 \right) \tag{1}$$

where:

- I_s is the saturation current (also called the scale current), $I_s \approx 10^{-15} A^1$
- V_T is the thermal voltage, $V_T = k \cdot T/q = 0.0862T \approx 25 mV$ at $T = 25 \,^{\circ}\text{C}$
 - k is the Boltzmann's constant, $k = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23}$ joules/kelvin

T is the absolute temperature in Kelvins

q is the magnitude of electronic charge, $q = 1.6 \times 10^{-19}$ coulomb

■ In the forward region, since $i \gg I_S$, Equation (1) can be simplified as

$$i \approx I_{s} \cdot e^{v/v_{\tau}}$$
 (2)

Equation (2) can be expressed alternatively in the logarithmic form as

 $v = V_T \cdot ln(i/I_s)$

¹In practice the value of I_s is not a constant. It varies and is influenced by the temperature

■ The i–v relationship is closely approximated by Equation (1)

$$i = I_s \left(e^{v/v_\tau} - 1 \right) \tag{1}$$

where:

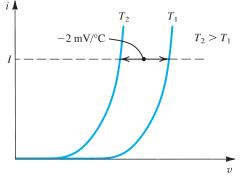
- I_s is the saturation current (also called the scale current), $I_s \approx 10^{-15} A^1$
- V_T is the thermal voltage, $V_T = k \cdot T/q = 0.0862T \approx 25 mV$ at $T = 25 \,^{\circ}\text{C}$
 - k is the Boltzmann's constant, $k = 8.62 \times 10^{-5} eV/K = 1.38 \times 10^{-23}$ joules/kelvin

T is the absolute temperature in Kelvins

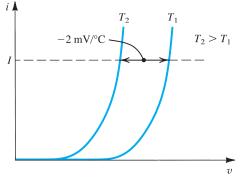
q is the magnitude of electronic charge, $q = 1.6 \times 10^{-19}$ coulomb

■ In the forward region, since $i \gg I_S$, Equation (1) can be simplified as

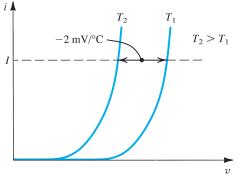
$$i \approx I_{s} \cdot e^{v/v_{\tau}}$$
 (2)

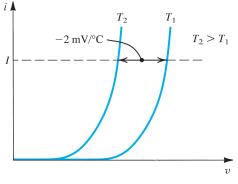

Equation (2) can be expressed alternatively in the logarithmic form as

$$\mathbf{v} = \mathbf{V}_T \cdot \ln\left(\frac{i}{l_s}\right) \tag{3}$$


¹In practice the value of I_s is not a constant. It varies and is influenced by the temperature

May 23, 2022 3 / 9


- I_s is not a constant and varies with temperature. As a rule of thumb, I_s doubles in value for every 5 °C rise in temperature.
- Since both I_s and V_T are functions of temperature, the forward i–v characteristic varies (as shown in Fig. 2)
- At a given constant diode current, the voltage drop across the diode decreases by approximately 2 mV for every 1 °C increase in temperature.
- The change in diode voltage with temperature has been exploited in the design of electronic thermometers.


- I_s is not a constant and varies with temperature. As a rule of thumb, I_s doubles in value for every 5 °C rise in temperature.
- Since both I_s and V_T are functions of temperature, the forward i–v characteristic varies (as shown in Fig. 2)
- At a given constant diode current, the voltage drop across the diode decreases by approximately 2 mV for every 1 °C increase in temperature.
- The change in diode voltage with temperature has been exploited in the design of electronic thermometers.

- I_s is not a constant and varies with temperature. As a rule of thumb, I_s doubles in value for every 5 °C rise in temperature.
- Since both I_s and V_T are functions of temperature, the forward i–v characteristic varies (as shown in Fig. 2)
- At a given constant diode current, the voltage drop across the diode decreases by approximately 2 mV for every 1 °C increase in temperature.
- The change in diode voltage with temperature has been exploited in the design of electronic thermometers.

- I_s is not a constant and varies with temperature. As a rule of thumb, I_s doubles in value for every 5 °C rise in temperature.
- Since both I_s and V_T are functions of temperature, the forward i–v characteristic varies (as shown in Fig. 2)
- At a given constant diode current, the voltage drop across the diode decreases by approximately 2 mV for every 1 °C increase in temperature.
- The change in diode voltage with temperature has been exploited in the design of electronic thermometers.

The current *i* has a very small effect on the forward biasing voltage, *v*

• Consider two currents I_1 and I_2 shown in

$$I_1 = I_s \cdot e^{V_1/V_T} \tag{4}$$

$$I_2 = I_s \cdot e^{V_2/V_T} \tag{5}$$

■ Dividing Equation (5) with Equation (4) gives

$$\frac{I_2}{I_1} = \frac{I_s \cdot e^{V_2/V_T}}{I_s \cdot e^{V_1/V_T}} = e^{(V_2 - V_1)/V_T}$$
(6)

Equation (6) can be re-written as

$$V_2 - V_1 = V_T \cdot \ln(l_2/l_1)$$
 (7)

Equation (7) can be written in term of base 10 logarithms as

$$V_2 - V_1 = 2.3 V_T \log_{10} l_2 / l_1 \tag{8}$$

From equation Equation (8), one can conclude that:

- If $I_2 = 10I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 60 mV$
- If $I_2 = 100I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 115mV$
- In short, the change in current has a very small impact on the voltage v
- The *i-v* relationship is best plotted on a semilog graph, with a vertical linear axis for *v* and a horizontal logarithmic axis for *i*. The resulting graph would be a straight line with a slope of 60mv per decade of current
- An *i*–*v* characteristic in the forward region (Fig. 1) shows that the current is negligibly small for v < 0.5V. This value is called the cut-in voltage.
- Cut-in voltage is voltage, below which, minimal current flows, and is approximately equal to 0.5V
- Fully conducting region is region in which the resistor of the diode $R_D \approx 0$ and lies between 0.6V and 0.8V
- These observations allow to assume that a conducting diode has approximately a voltage drop $V_D \approx 0.7 V$ across it.

From equation Equation (8), one can conclude that:

- If $I_2 = 10I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 60 mV$
- If $I_2 = 100I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 115mV$
- In short, the change in current has a very small impact on the voltage v
- The *i-v* relationship is best plotted on a semilog graph, with a vertical linear axis for *v* and a horizontal logarithmic axis for *i*. The resulting graph would be a straight line with a slope of 60mv per decade of current
- An *i*–*v* characteristic in the forward region (Fig. 1) shows that the current is negligibly small for v < 0.5V. This value is called the cut-in voltage.
- Cut-in voltage is voltage, below which, minimal current flows, and is approximately equal to 0.5V
- Fully conducting region is region in which the resistor of the diode $R_D \approx 0$ and lies between 0.6V and 0.8V
- These observations allow to assume that a conducting diode has approximately a voltage drop $V_D \approx 0.7 V$ across it.

From equation Equation (8), one can conclude that:

- If $I_2 = 10I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 60 mV$
- If $I_2 = 100I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 115mV$
- In short, the change in current has a very small impact on the voltage v
- The *i-v* relationship is best plotted on a semilog graph, with a vertical linear axis for *v* and a horizontal logarithmic axis for *i*. The resulting graph would be a straight line with a slope of 60mv per decade of current
- An *i*–*v* characteristic in the forward region (Fig. 1) shows that the current is negligibly small for v < 0.5V. This value is called the cut-in voltage.
- Cut-in voltage is voltage, below which, minimal current flows, and is approximately equal to 0.5V
- Fully conducting region is region in which the resistor of the diode $R_D \approx 0$ and lies between 0.6V and 0.8V
- These observations allow to assume that a conducting diode has approximately a voltage drop $V_D \approx 0.7 V$ across it.

From equation Equation (8), one can conclude that:

- If $I_2 = 10I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 60 mV$
- If $I_2 = 100I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 115mV$
- In short, the change in current has a very small impact on the voltage v
- The *i*-*v* relationship is best plotted on a semilog graph, with a vertical linear axis for *v* and a horizontal logarithmic axis for *i*. The resulting graph would be a straight line with a slope of 60mv per decade of current
- An *i*–*v* characteristic in the forward region (Fig. 1) shows that the current is negligibly small for v < 0.5V. This value is called the cut-in voltage.
- Cut-in voltage is voltage, below which, minimal current flows, and is approximately equal to 0.5V
- Fully conducting region is region in which the resistor of the diode $R_D \approx 0$ and lies between 0.6V and 0.8V
- These observations allow to assume that a conducting diode has approximately a voltage drop $V_D \approx 0.7 V$ across it.

From equation Equation (8), one can conclude that:

- If $I_2 = 10I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 60 mV$
- If $I_2 = 100I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 115mV$
- In short, the change in current has a very small impact on the voltage v
- The *i*-*v* relationship is best plotted on a semilog graph, with a vertical linear axis for *v* and a horizontal logarithmic axis for *i*. The resulting graph would be a straight line with a slope of 60mv per decade of current
- An *i*–*v* characteristic in the forward region (Fig. 1) shows that the current is negligibly small for v < 0.5V. This value is called the cut-in voltage.
- Cut-in voltage is voltage, below which, minimal current flows, and is approximately equal to 0.5V
- Fully conducting region is region in which the resistor of the diode $R_D \approx 0$ and lies between 0.6V and 0.8V
- These observations allow to assume that a conducting diode has approximately a voltage drop $V_D \approx 0.7 V$ across it.

From equation Equation (8), one can conclude that:

- If $I_2 = 10I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 60 mV$
- If $I_2 = 100I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 115mV$
- In short, the change in current has a very small impact on the voltage v
- The *i*-*v* relationship is best plotted on a semilog graph, with a vertical linear axis for *v* and a horizontal logarithmic axis for *i*. The resulting graph would be a straight line with a slope of 60mv per decade of current
- An *i*–*v* characteristic in the forward region (Fig. 1) shows that the current is negligibly small for v < 0.5V. This value is called the cut-in voltage.
- Cut-in voltage is voltage, below which, minimal current flows, and is approximately equal to 0.5V
- Fully conducting region is region in which the resistor of the diode $R_D \approx 0$ and lies between 0.6V and 0.8V
- These observations allow to assume that a conducting diode has approximately a voltage drop $V_D \approx 0.7 V$ across it.

From equation Equation (8), one can conclude that:

- If $I_2 = 10I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 60 mV$
- If $I_2 = 100I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 115mV$
- In short, the change in current has a very small impact on the voltage v
- The *i*-*v* relationship is best plotted on a semilog graph, with a vertical linear axis for *v* and a horizontal logarithmic axis for *i*. The resulting graph would be a straight line with a slope of 60mv per decade of current
- An *i*–*v* characteristic in the forward region (Fig. 1) shows that the current is negligibly small for v < 0.5V. This value is called the cut-in voltage.
- Cut-in voltage is voltage, below which, minimal current flows, and is approximately equal to 0.5V
- Fully conducting region is region in which the resistor of the diode $R_D \approx 0$ and lies between 0.6V and 0.8V
- These observations allow to assume that a conducting diode has approximately a voltage drop $V_D \approx 0.7 V$ across it.

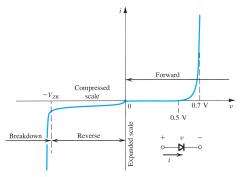
From equation Equation (8), one can conclude that:

- If $I_2 = 10I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 60 mV$
- If $I_2 = 100I_1$, the diode voltage drop changes by only $V_D = 2.3V_T \approx 115mV$
- In short, the change in current has a very small impact on the voltage v
- The *i*-*v* relationship is best plotted on a semilog graph, with a vertical linear axis for *v* and a horizontal logarithmic axis for *i*. The resulting graph would be a straight line with a slope of 60mv per decade of current
- An *i*–*v* characteristic in the forward region (Fig. 1) shows that the current is negligibly small for v < 0.5V. This value is called the cut-in voltage.
- Cut-in voltage is voltage, below which, minimal current flows, and is approximately equal to 0.5V
- Fully conducting region is region in which the resistor of the diode $R_D \approx 0$ and lies between 0.6V and 0.8V
- These observations allow to assume that a conducting diode has approximately a voltage drop $V_D \approx 0.7 V$ across it.

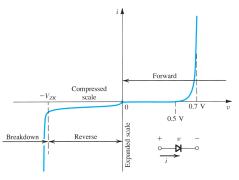
The Reverse-bias region

The Reverse-bias region

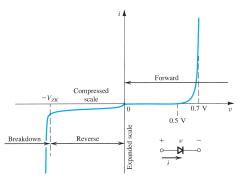
- The reverse-bias region of operation is entered when v < 0.
- The *i*-v relationship, for negative voltages with |v| > VT (25mV), is approximated by Equation (9)

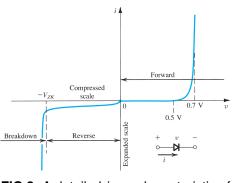

$$\begin{split} \dot{I} &= -I_{s} \cdot e^{-|v|/v_{T}} \\ &= -I_{s} \left(\frac{1}{e^{|v|/v_{T}}}\right) \end{split}$$

• When $v \gg V_T$, the exponential term becomes negligibly small compared to unity, and the diode current becomes


$$i \approx -I_s$$
 (10)

- Real diodes have reverse currents that, though quite small, are much larger than I_s . For instance, a small-signal diode whose I_s is on the order of $10^{-14}A$ to $10^{-15}A$ could show a reverse current on the order of $10^{-9}A$.
- A large part of this reverse current is attributed to leakage effects.


- The breakdown region of operation is entered when $v < V_{ZK}$
- The constant V_{ZK} is called Zener-Knee voltage, where the subscript Z stands for zener and K denotes knee.
- In the breakdown region, the reverse current increases rapidly while the associated increase in voltage drop being very small
- Diode breakdown is not destructive, provided the power dissipated in the diode is limited by external circuitry to a "safe" level.


- The breakdown region of operation is entered when $v < V_{ZK}$
- The constant *V_{ZK}* is called Zener-Knee voltage, where the subscript *Z* stands for zener and *K* denotes knee.
- In the breakdown region, the reverse current increases rapidly while the associated increase in voltage drop being very small
- Diode breakdown is not destructive, provided the power dissipated in the diode is limited by external circuitry to a "safe" level.

- The breakdown region of operation is entered when $v < V_{ZK}$
- The constant *V_{ZK}* is called Zener-Knee voltage, where the subscript *Z* stands for zener and *K* denotes knee.
- In the breakdown region, the reverse current increases rapidly while the associated increase in voltage drop being very small
- Diode breakdown is not destructive, provided the power dissipated in the diode is limited by external circuitry to a "safe" level.

- The breakdown region of operation is entered when $v < V_{ZK}$
- The constant *V_{ZK}* is called Zener-Knee voltage, where the subscript *Z* stands for zener and *K* denotes knee.
- In the breakdown region, the reverse current increases rapidly while the associated increase in voltage drop being very small
- Diode breakdown is not destructive, provided the power dissipated in the diode is limited by external circuitry to a "safe" level.

Summary

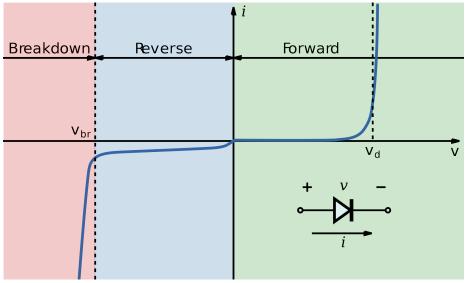


FIG 4. I-V characteristics of a p-n junction diode

The end